DAILY PRACTICE PROBLEMS

DPP No. 51

Total Marks : 26

Max. Time : 26 min.

Topics : Circle, Straight Lines, Pair of Straight Lines

Туре с	of Questions					М.М.,	Min.
Single Match	choice Objective (no n the Following (no ne	negative marking) Q.1,2 gative marking) Q.7	,3,4,5,6	(3 marks, (8 marks,	3 min.) 8 min.)	[18, [8,	18] 8]
1.	If one end of a diame the other end are : (A) $(1 \ 2)$	eter of the circle $x^2 + y^2$	$^{2}-4x-6y+11$	I = 0 is (3,	4) then the co-	-ordina	tes of
2.	A circle is concentric w equation of the circle i (A) $x^2 + y^2 - 2x + 4y -$ (C) $x^2 + y^2 - 2x + 4y -$	with circle $x^2 + y^2 - 2x + 4$ is : [use $\pi = 22/7$] - 44 = 0 - 43 = 0	(b) $(x - 1)^2 - (D) x^2 + y^2 + (D) x^2 + (D$	perimeter o + (y + 2)² = 2x + 4y - 4	f the semicircle i (126/11) ² i9 = 0	s 36 th	en the
3.	Given two circles $x^2 + y^2 - 6x - 2y + 5 = 0$ & $x^2 + y^2 + 6x + 22y + 5 = 0$. The tangent at (2, -1) to the first circle : (A) passes outside the second circle (B) touches the second circle in 2 real points (D) passes through the centre of the second circle.						
4.	The radius of the circle axes is : (A) 2 units	e inscribed in the triang (B) 3/2 units	le formed by t (C) 5/2 units	he line 3x +	-4y = 24 & the (D) none of thes	co–or	dinate
5.	The equation of the c 3x - 4y = 0 is : (A) $x^2 + y^2 - 24x - y - (C) x^2 + y^2 - 16x - 18$	Sircle of radius 5 in the -25 = 0 3y + 64 = 0	first quadrant (B) $x^2 + y^2 - (D) x^2 + y^2 - y^2$	t which tou 30 x – 10 y 20 x – 12 y	ches the x-axis + 225 = 0 + 144 = 0	and th	e line
6.	Suppose a ray of light then reflects from the (A) $x = 4\frac{1}{2}$	leaves the point (3, 4) r x-axis, and finally arriv (0, y) (0, y) (3, 4) (3, 4) (3, 4) (3, 4) (3, 4) (3, 2) (3, 0) (3, 2) (3, 0) (3, 2) (3,	reflects from the point of the	ne y-axis ar t (8, 2), the	nd moves toward n the value of x, (D) $5\frac{1}{3}$	ls the x is	∹axis,
7.	Consider the general e	equation of second degr	ee ax ² + by ² +	2hxy + 2gx	x + 2fy + c = 0. If	this eq	uation

represents a pair of straight lines, map the two columns in the most accurate sense. Match the column

		-
Colum	n –	Ι

Column – II

R www.studentbro.in

(A)	If (x_1, y_1) is the point of intersection of the two lines, then $(ax_1 + hy_1) (hx_1 + by_1) =$	(p)	$\frac{c}{\sqrt{\left(a-b\right)^2+4h^2}}$
(B)	$af^2 + bg^2 + ch^2 =$	(q)	ab
(C)	The lines are parallel if h ² =	(r)	fg
(D)	Product of perpendiculars from the origin	(s)	abc + 2fgh

CLICK HERE

>>

Answers Key

- **1.** (A)
- **2.** (A)
- **3.** (B)
- **4.** (A)
- **5.** (B)
- **6.** (B)
- 7. (A) \rightarrow (r), (B) \rightarrow (s), (C) \rightarrow (q), (D) \rightarrow (p)

Get More Learning Materials Here : 📕

